

Development Standards & Practices Used
Following a set of standards ensures development of a product that is safe, adheres to the

consumer preferences and expectations; while also ensuring a reliable, and organized workflow

for the engineers and the consumer. The standards used in this engineering standards used in this

project follow the guidelines of:

- IEEE Engineering Standards

- IEEE Software Engineering Standards

Summary of Requirements

- Biobrick repository
- Extending plugin to support bio bricks
- Web crawling
- Software product line engineering
- Translation of features to be compatible with Feature IDE
- Creating a system architecture

Applicable Courses from Iowa State University Curriculum
- Com S 228: Introduction to Data Structures

- Com S 309: Software Development Practices

- Com S 311: Design and Analysis of Algorithms

- CPR E 308: Introduction to Operating Systems

- E E 230: Electronic Circuits and Systems

New Skills/Knowledge acquired that was not taught in courses
- Background on BioBrick parts that are used in biological living cells building.

- Feature Modeling Concept and application

- FeatureIDE Eclipse Plugin

- Effective Team Coordination

- Effective Client Communication

SDDEC​20-22 1

Table of Contents
1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 5

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2. Specifications and Analysis 5

2.1 Proposed Approach 5

2.2 Design Analysis 6

2.3 Development Process 6

2.4 Conceptual Sketch 7

3. Statement of Work 7

3.1 Previous Work And Literature 7

3.2 Technology Considerations 8

3.3 Task Decomposition 8

3.4 Possible Risks And Risk Management 8

3.5 Project Proposed Milestones and Evaluation Criteria 8

3.6 Project Tracking Procedures 8

3.7 Expected Results and Validation 8

4. Project Timeline, Estimated Resources, and Challenges 9

4.1 Project Timeline 9

4.2 Feasibility Assessment 9

4.3 Personnel Effort Requirements 9

4.4 Other Resource Requirements 9

4.5 Financial Requirements 10

5. Testing and Implementation 10

5.1 Interface Specifications 10

5.2 Hardware and software 10

5.3 Functional Testing 10

SDDEC​20-22 2

5.4 Non-Functional Testing 1​0

5.5 Process 1​1

5.6 Results 1​1

6. Closing Material 1​1

6.1 Conclusion 1​1

6.2 References 1​1

6.3 Appendices 1​2

SDDEC​20-22 3

List of figures/tables/symbols/definitions

- BioBrick Parts:​ a standard for interchangeable parts, developed with a view to building
biological systems in living cells.

- Software Product Line:​ Software engineering methods, tools and techniques for creating
a collection of similar software systems from a shared set of software assets using a
common means of production

- Feature Model:​ a compact representation of all the products of the Software Product Line
in terms of features.

- FeatureIDE:​ an Eclipse-based IDE that supports all phases of feature-oriented software
development for the development of SPLs: domain analysis, domain design, domain
implementation, requirements analysis, software generation, and quality assurance.
Different SPL implementation techniques are integrated such as feature-oriented
programming (FOP), aspect-oriented programming (AOP), preprocessors, and plug-ins.

1 Introduction

1.1 A​CKNOWLEDGEMENT

We would like to thank Dr.Myra Cohen (Iowa State University), and Mikaela ​Cashman (Iowa State
University) for providing the technical knowledge and guidance needed to be successful in the
completion of our project. We would also like to thank our course supervisors, and anyone else
who has provided mentorship during the course of our project.

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT

Feature modeling is an organization tool that allows an engineer to represent features in a tree of
hierarchies. It is a unique and efficient way of modeling feature rich systems.

In our instance, an open source repository called BioBricks allows scientists to view various DNA
models. While this tool is useful, it does not implement the feature model organization method;
which could reveal new things about these DNA models that one could not see before.

Our goal over the course of one year is to create an eclipse plugin that creates feature models based
on existing models found in an open-source repository called BioBricks. A successful
implementation of this could allow biologists and scientists to view various models from BioBricks
in an organized hierarchy.

1.3 O​PERATIONAL​ E​NVIRONMENT

Our Project is software-based and uses Java and the FeatureIDE plugin for Eclipse .

SDDEC​20-22 4

1.4 R​EQUIREMENTS

Access to the Biobrick repository with the extension plugin of Feature IDE. Through web crawling
and scraping, gathered information is used to translate information and make it compatible with
Feature IDE. This provides users to build software product lines of DNA Feature Models.

1.5 I​NTENDED​ U​SERS​ ​AND​ U​SES

– The main intended users are biologists who build biological models of living organisms with
specific desired properties . However, this project helps anyone who wants to try building feature
models of dna without any restriction.

1.6 A​SSUMPTIONS​ ​AND​ L​IMITATIONS

Assumptions:

- Users with and without knowledge of feature models can build feature models of DNA.
- The end product provides access and can used anywhere with internet access to Biobrick

repository

Limitations:

- The Biobricks Repository is the main source of information and users need internet access
anytime they want to use the plugin.

1.7 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES

An expected end product is a FeatureIDE plugin that uses parts extracted from the BioBricks
Repository.. The plugin includes up-to-date BioBrick parts organized in a feature modeling plugin
in an organized categories with informative description for each part allowing users to construct
models without the hustle of navigating BioBricks repository. Estimated Delivery Date: December
1st 2020

2. Specifications and Analysis

2.1 P​ROPOSED​ A​PPROACH

Our project can be tackled in various techniques and methods to be able to solve it and deliver a
high-quality product. One method of approach can be dividing the project into two sections:
theoretical and practical and for each section, assign two subsections: architecture and scope. By
doing so, we can begin with the theoretical segment in which we understand every little aspect of
the project enactment (theoretically) and composing the scope of the theory. After that, having a
conceptual insight and obtaining all architectural designs will help ease the design application and
the practical section. Another approach I deem vital, and best is approaching this project as a
project manager working on a software application for a company. Our project is entirely coding
and software design, so this method will be unparalleled. Devising such a mechanism will help
produce an ideal product. Utilizing this method will commence several documents to aid in
beginning the project: a business case, statement of requirements, a project timeline, risk
assessment and mitigation, budget, and lastly, a communication plan. The last method of approach
will be an agile approach. This approach will be promptly coordinated, vigorous, and nimble and
adapting appropriately to varying settings. This will provide a fast-moving solution to the client,
running editions of the software are consistently supplied and improved, and ultimately a

SDDEC​20-22 5

developmental team who cooperates throughout the advancement of the software procedure and
are on similar stances. These methods of approach all follow IEEE standards with designing a
software project and the standards regarding joint project work. So far, my team and I began with
researching and analyzing several papers concerning everything we ought to know to be capable of
compiling an architectural blueprint of the project and begin development. We started studying
various research papers handed out to us from our client: DNA as features: Organic Software
Product Lines and Principles of Feature Modeling. To start on the development of our plugin, we
need to comprehend software product line engineering, the BioBricks repository, and Feature IDE
(an eclipse plugin). The first few weeks began with grasping the core concept of the project by
identifying and exploring the various aspects of implementation (mentioned above). In the
following weeks, my team and I started developing a project scheme and strategy. We also needed
to fuel ourselves with the practice of utilizing the many tools we will be using for this project.
Those tools are web crawling, Java/XML programming, and working with Eclipse plugins. One of
the team members is working on managing and editing the source code for the eclipse plugins to
be able to grasp the idea of how they are implemented and built. The second member started
practicing web crawling/ scraping random items from the internet and altering the scraped data
into user readable code so we can add it to a plugin. We also began working on different
documentation and the project schedule that will set the foundation on what we need to finish
first, what we should work on next, and the expected risks with their mitigation.

2.2 D​ESIGN​ A​NALYSIS

As discussed in the previous section, we went over the different tools necessary to begin our project
and exactly how to use them. Those tools are web crawling, Java/XML programming, and working
with Eclipse plugins. One of the team members is working on managing and editing the source
code for the eclipse plugins to be able to grasp the idea of how they are implemented and built. The
second member started practicing web crawling/ scraping random items from the internet and
altering the scraped data into user readable code so we can add it to a plugin. We also began
working on different documentation and the project schedule that will set the foundation on what
we need to finish first, what we should work on next, and the expected risks with their mitigation.
We finished a web crawling experiment, editing eclipse plugin code, a project proposal, and
exploring the repository. Most of the tools and experiments we tried worked well; we had mostly
successes but a single failure. ​Web crawling was a complicated task, but we managed to write code
that scraped a simple, random website making our experiment successful. Another success was
understanding and editing the source code for an eclipse plugin, which will help us in the future
when we begin working on the project. After successfully scraping the data from the website and
reading it, we wanted to translate it into XML code to be able to use it in a plugin of our choice. We
had some trouble translating it to correct XML, and that was our only failure. Throughout the
testing and experimenting session, we made a couple of observations on things we need to modify
and tools we need to take advantage of. One observation was that data scraping would not give us
what we want (XML code), and we should change that tool to a SQL server instead. Some recorded
thoughts we had were that learning XML will help us a lot during the product, changing from web
scraping to an SQL database, and understanding how additions to plugins are made. We also need
to continue working on software design and how we need to approach the various elements of the
project, so we minimize the failure rate of experiments and not feel overwhelmed.

2.3 D​EVELOPMENT​ P​ROCESS

DNA to Feature Models follows Agile software development. Based on the nature of the project,
Agile is most suitable due to project requirements and features evolving throughout the process of
creation. The project has preliminary, required foundations but the building blocks and the
materials built upon the foundations dynamically change with the project.

SDDEC​20-22 6

2.4 C​ONCEPTUAL​ S​KETCH

The conceptual sketch of the project is shown in Figure 1. The project involves utilizing Software
Product Lines and Feature Models. To present Feature Models that make sense to a given user, a
friendly user-interface is required. The user interface is provided through an Integrated
Development Environment called FeatureIDE. This section is presented through the frontend
aspect of the plugin. The frontend includes all formable relationships as defined by a feature model,
and is built-upon Eclipse.

The next section talks about the backend aspect of the project. Parts from the BioBrick Repository
will be extracted using a web-scraper and stored in a designated database. This database includes
all information relevant parts used in a DNA model. Using the database, creation of models depend
on an XML parser which organizes elements of a model according to a user and utilizes all
properties of a subset of features with respect to a superset of features.

Figure 1: the flow of project requirements and dependencies. The figure is modelled in a similar to a
feature model.

3. Statement of Work

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE

Include relevant background/literature review for the project

– If similar products exist in the market, describe what has already been done

– If you are following previous work, cite that and discuss the ​advantages/shortcomings

– Note that while you are not expected to “compete” with other existing products / research
groups, you should be able to differentiate your project from what is available

SDDEC​20-22 7

Detail any similar products or research done on this topic previously. Please cite your sources and
include them in your references. All figures must be captioned and referenced in your text.

3.2 T​ECHNOLOGY​ C​ONSIDERATIONS

Highlight the strengths, weakness, and trade-offs made in technology available.

Discuss possible solutions and design alternatives

3.3 T​ASK​ D​ECOMPOSITION

In order to solve the problem at hand, it helps to decompose it into multiple tasks and to
understand interdependence among tasks.

3.4 P​OSSIBLE​ R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT

Include any concerns or details that may slow or hinder your plan as it is now. These may include
anything to do with costs, materials, equipment, knowledge of area, accuracy issues, etc.

3.5 P​ROJECT​ P​ROPOSED​ M​ILESTONES​ ​AND​ E​VALUATION​ C​RITERIA

What are some key milestones in your proposed project? Consider developing task-wise milestones.
What tests will your group perform to confirm it works?

3.6 P​ROJECT​ T​RACKING​ P​ROCEDURES

What will your group use to track progress throughout the course of this and next semester?

3.7 E​XPECTED​ R​ESULTS​ ​AND​ V​ALIDATION

What is the desired outcome?

How will you confirm that your solutions work at a ​High level​?

SDDEC​20-22 8

4. Project Timeline, Estimated Resources, and Challenges

4.1 P​ROJECT​ T​IMELINE

• A realistic, well-planned schedule is an essential component of every well-planned project

• Most scheduling errors occur as the result of either not properly identifying all of the necessary
activities (tasks and/or subtasks) or not properly estimating the amount of effort required to
correctly complete the activity

• A detailed schedule is needed as a part of the plan:

– Start with a Gantt chart showing the tasks (that you developed in 3.3) and associated subtasks
versus the proposed project calendar. The Gantt chart shall be referenced and summarized in the
text.

– Annotate the Gantt chart with when each project deliverable will be delivered

• Completely compatible with an Agile development cycle if that’s your thing

How would you plan for the project to be completed in two semesters? Represent with appropriate
charts and tables or other means.

Make sure to include at least a couple paragraphs discussing the timeline and why it is being
proposed. Include details that distinguish between design details for present project version and
later stages of project.

4.2 F​EASIBILITY​ A​SSESSMENT

Realistic projection of what the project will be. State foreseen challenges of the project.

4.3 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS

Include a detailed estimate in the form of a table accompanied by a textual reference and
explanation. This estimate shall be done on a task-by-task basis and should be based on the
projected effort required to perform the task correctly and not just “X” hours per week for the
number of weeks that the task is active

4.4 O​THER​ R​ESOURCE​ R​EQUIREMENTS

Identify the other resources aside from financial, such as parts and materials that are required to
conduct the project.

SDDEC​20-22 9

4.5 F​INANCIAL​ R​EQUIREMENTS

If relevant, include the total financial resources required to conduct the project.

5. Testing and Implementation
Testing is an ​extremely ​important component of most projects, whether it involves a circuit, a
process, or a software library

Although the tooling is usually significantly different, the testing process is typically quite similar
regardless of CprE, EE, or SE themed project:

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study for functional and non-functional requirements)
2. Define the individual items to be tested
3. Define, design, and develop the actual test cases
4. Determine the anticipated test results for each test case 5. Perform the actual tests
6. Evaluate the actual test results
7. Make the necessary changes to the product being tested 8. Perform any necessary
retesting
9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you’ve
determined.

5.1 I​NTERFACE​ S​PECIFICATIONS

– Discuss any hardware/software interfacing that you are working on for testing your project

5.2 H​ARDWARE​ ​AND​ ​SOFTWARE

– Indicate any hardware and/or software used in the testing phase

– Provide brief, simple introductions for each to explain the usefulness of each

5.3 F​UNCTIONAL​ T​ESTING
Examples include unit, integration, system, acceptance testing

5.4 N​ON​-F​UNCTIONAL​ T​ESTING

Testing for performance, security, usability, compatibility

SDDEC​20-22 10

5.5 P​ROCESS

– Explain how each method indicated in Section 2 was tested

– Flow diagram of the process if applicable (should be for most projects)

5.6 R​ESULTS

– List and explain any and all results obtained so far during the testing phase

● – Include failures and successes

● – Explain what you learned and how you are planning to change it as you progress with
your project

● – If you are including figures, please include captions and cite it in the text

• This part will likely need to be refined in your 492 semester where the majority of the
implementation and testing work will take place

-​Modeling and Simulation​: This could be logic analyzation, waveform outputs, block testing. 3D
model renders, modeling graphs.

-List the ​implementation Issues and Challenges​.

6. Closing Material

6.1 C​ONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

6.2 R​EFERENCES

This will likely be different than in project plan, since these will be technical references versus
related work / market survey references. Do professional citation style(ex. IEEE).

SDDEC​20-22 11

6.3 A​PPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar that does not directly pertain to the problem but
helps support it, include that here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc. PCB testing issues etc.
Software bugs etc.

SDDEC​20-22 12

